Dimensión de un espacio vectorial

Dimensión de un espacio vectorial
La dimensión de un espacio vectorial es la respuesta a la pregunta: ¿ Cuántos parámetros se necesitan para localizar con toda precisión un punto en este espacio ? Bien es sabido que sobre una recta donde se ha escogido dos puntos , O(origen) e I(abcisa = 1) todo punto es perfectamente definido a partir de su abscisa x: OM = xOI = xi (en negritas, los vectores). En un plano (P), se escoge tres puntos distintos O,I e J, se define los vectores i = OI e j = OJ y un punto M es localizado por su abcisa x y su ordenada y: M(x,y) significa OM = xi + yj. Si se cambia el cuerpo de los escalares , de R a C, entonces el mismo punto M será deteminado por el complejo zM = x + yi, es decir por un solo parametro. La dimensión de P es 1 sobre C y dos sobre R : dimCP = 1 y dimRP = 2. Un plano real es por lo tanto una recta compleja. La apelación plano complejo para designar un plano real con escritura compleja de las coordenadas (x + yi en vez de (x;y) ) es erronea, pero muy común.

Enciclopedia Universal. 2012.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • Dimensión de un espacio vectorial — Saltar a navegación, búsqueda La dimensión de un espacio vectorial es la respuesta a la pregunta: ¿Cuántos parámetros se necesitan para localizar con toda precisión un punto en este espacio? Bien es sabido que sobre una recta donde se ha escogido …   Wikipedia Español

  • Espacio vectorial — Saltar a navegación, búsqueda Un espacio vectorial es un conjunto de objetos (llamados vectores) que pueden escalarse y sumarse. Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra… …   Wikipedia Español

  • Espacio vectorial normado — Saltar a navegación, búsqueda En matemática un espacio vectorial se dice que es normado si en él se puede definir una norma vectorial. Podemos señalar los siguientes hechos que ayudan a comprender la importancia del concepto de espacio normado:… …   Wikipedia Español

  • Espacio — Saltar a navegación, búsqueda Espacio (del latín spatium) se refiere: Especialmente al espacio físico, en el que se ubican los objetos sensibles; y la extensión que contiene toda la materia existente; la distancia entre dos cuerpos; la distancia… …   Wikipedia Español

  • Dimensión — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Dimensión — (Del lat. dimensio, onis < dimetiri, medir en todos los sentidos.) ► sustantivo femenino 1 FÍSICA Cada una de las magnitudes que se consideran en el espacio para determinar el tamaño de las cosas: ■ la longitud y la masa son dimensiones de los …   Enciclopedia Universal

  • Espacio euclídeo — Saltar a navegación, búsqueda El espacio euclídeo o euclidiano es el espacio matemático n dimensional usual, una generalización de los espacios de 2 (plano euclídeo) y 3 dimensiones estudiados por Euclides. Estructuralmente un espacio euclídeo es …   Wikipedia Español

  • Espacio de Hilbert — Saltar a navegación, búsqueda En matemáticas, el concepto de espacio de Hilbert es una generalización del concepto de espacio euclídeo. Esta generalización permite que nociones y técnicas algebraicas y geométricas aplicables a espacios de… …   Wikipedia Español

  • Espacio de Banach — Saltar a navegación, búsqueda En matemáticas, los espacios de Banach, llamados así en honor de Stefan Banach, son uno de los objetos de estudio más importantes en análisis funcional. Los espacios de Banach son típicamente espacios de funciones de …   Wikipedia Español

  • Espacio cociente — Saltar a navegación, búsqueda En álgebra lineal, el concepto del espacio cociente es de gran importancia para la álgebra de conjuntos. Contenido 1 Definición 2 Clase de un vector 3 Dimensión del espacio cociente …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”